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The representation of the human electroencephalogram �EEG� records by neurophysiologists demands stan-
dardized time-amplitude scales for their correct conventional interpretation. In a suite of graphical experiments
involving scaling affine transformations we have been able to convert electroencephalogram samples corre-
sponding to any particular sleep phase and relaxed wakefulness into each other. We propound a statistical
explanation for that finding in terms of data collapse. As a sequel, we determine characteristic time and
amplitude scales and outline a possible physical interpretation. An analysis for characteristic times based on
lacunarity is also carried out as well as a study of the synchrony between left and right EEG channels.
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I. INTRODUCTION

The human electroencephalogram �EEG� is the collective
by-product of the electric activity of the brain. Nowadays,
electroencephalography constitutes a widely used noninva-
sive clinical technique since a lot of wave forms associated
with normal and abnormal physiological states have been
classified.

From the physical point of view, the EEG measures the
potential difference between electrodes positioned according
to international standards as a function of time. Each of these
integrates the activity of the cortical neurons in the neighbor-
hood of its contact surface which, in turn, is the result of
countless discharge cascades across the network of neurons
located in deeper areas of the brain. Due to this intricate
origin one could think of the EEG as an approximately ran-
dom time series. At the same time, however, neural electrical
signals also carry important physiological information. This
would suggest some short term structure and regularity. Fur-
thermore �1�, there is a number of geometric and biophysical
constraints on brain wiring which impinge on the way pulses
combine to form the EEG. The final situation would likely be
an intricate balance between these two limiting aspects of the
EEG, namely, regularity and randomness. The complexity of
EEG records emerges as the outcome of that interplay.

A field in which electroencephalography has played a par-
ticularly significant role is sleep studies �2�. One distin-
guishes between rapid-eye-movement �REM� sleep and non-
REM �NREM� sleep. In turn in NREM sleep one
differentiates between light sleep, with stages I and II, and
slow sleep, with stages III and IV or just with no distinction
between them �stage III/IV�. Relaxed �closed eyes� wakeful-
ness possesses its own features and is also included in sleep

analysis. Throughout the night sleep phases alternate, at in-
tervals of unpredictable duration, following patterns which
vary according to the age or the presence or absence of ce-
rebral pathology. The practical definition of these stages
comes primarily from the analysis of EEG wave forms ac-
cording to standard Rechtschaffen-Kales �RK� rules �3� that
attend mainly to rhythms and amplitudes, although further
physiological signals are also considered. Together they con-
stitute the so-called sleep polysomnography.

Clinicians are trained to identify different wave forms in
EEGs as signatures of particular states of the brain. Further-
more, they are required to automate as much as possible their
responses, and for the sake of convenience the data are dis-
played in a fully standardized way in a time-amplitude plane.
Convention has lead the medical clinicians to some results
which, as far as we know, have not yet been fully explained
in a consistent mathematical way from the EEG raw data. It
is the aim of this paper to advance such an analysis for the
following features.

�1� Convertibility of the EEG samples of the different
sleep stages and relaxed wakefulness into each other. As de-
scribed in Sec. III this is achieved by appropriately adjusting
the polygraph scales and certainly deserves an explanation.
In Sec. V we propound a statistical explanation for that find-
ing and argue that it constitutes strong evidence for the ex-
istence of universal traits in the brain electric activity during
sleep.

�2� Detection of rhythms by assignment of frequencies to
the EEG signals. This is usually done in daily practice by
determination of the zero-crossing rate �ZCR� of the electric
potential values. This procedure is not free from ambiguities
and so other possibilities of defining instantaneous frequen-
cies are worth considering. In Sec. IV we explore a proposal
in that direction, based on Hilbert transform, which is after-
wards fully analyzed in Sec. V.

�3� The striking similarity between REM sleep and wake-
fulness is well-known to neurophysiologists. In some re-
spects REM and NREM sleep are more different from a
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medical point of view. It would then be interesting to extract,
from the raw data, numerical indicators echoing this distinc-
tive situation. In Sec. V we introduce a proper time param-
eter which reflects that condition, while in Sec. VI we nu-
merically show that in other aspects REM is nearer to other
genuine sleep stages.

�4� Clinicians have identified a certain hierarchy among
the different sleep stages based mainly on qualitative details.
By a convenient analysis of the data we turn this sleep phase
ordering quantitative in Sec. V. A certain degree of hierarchy
of sleep stages is also indicated by the Hilbert phase syn-
chrony between left and right EEG channels as we point out
in Sec. VII.

In Sec. II we describe the data on which we base our
conclusions. In attaining our results the use of the Gabor
analytic signal method �4,5� based on Hilbert transform �6�
applied to the EEG time-series has been instrumental. We
have also exploited the idea of lacunarity �7�, a concept bor-
rowed from fractal geometry.

Universality in brain electrical activity has already been
reported in the literature: different aspects of spatial univer-
sality have been considered for awake subjects �8� and for
various cognitive tasks �9�. Alternatively, the heartbeat dur-
ing sleep has been shown to follow universal patterns for
healthy individuals �10�. In our case the alleged EEG univer-
sality is based on the data collapse of appropriate probability
density functions �PDF� into master curves. This rescaling is
a hallmark of universality in physiological sleep and unveils
an unexpected property hidden in the RK filing rules. It but-
tresses the existence of a common cerebral mechanism with
a few tunable regimes and goes one step beyond the com-
plexity reduction performed by the sleep phases classifica-
tion. Our results suggest also some more speculative inter-
pretation which we defer to the discussion in Sec. VIII.

II. DATA DESCRIPTION

The time series to be analyzed were sampled from raw
data obtained with a digital polygraph Alice 3, v.1.19 from
Healthdyne Technologies, Inc. Usual parameters were re-
corded in addition to EEG: electrocardiogram, thorax and
abdomen breathing movements, nose-mouth air flux, eye
movements, chin and legs muscle contractions, body posi-
tion, arterial saturation of oxygen, and snore. The EEG was
recorded by means of two pairs of electrodes C3-A1 and
C4-A2 on the scalp, according to the international system
10/20. Each channel captures the signal from the corre-
sponding hemisphere in the central area albeit they do not
represent the activity of the whole hemisphere. The EEG
signal was steadily filtered during the whole process
�0.55 Hz high pass, 45 Hz low pass�. Polysomnographies
were 7 h long and the sampling rate was 100 Hz.

All the data we consider in our analysis were taken in
routine observations of patients coming to the hospital for
diagnosis in the Sleep Unit. Sample selection was carried out
according to the following criteria. First, absence of artifacts
was required, namely no apparent interference with signals
�biological or otherwise� not originated in brain. Second,
samples were fully representative of wakefulness in a relaxed

state and different sleep phases. They fit, with no ambiguity,
the general criteria for sleep phase reading, commonly used
in clinical practice, following the time honored
Rechtschaffen-Kales �RK� standardized sleep manual �3�.

As a last requirement, selected samples of a particular
phase and subject were neither adjoining nor clustered in
time. They originated at well-separated time intervals during
the night. Each selected time series consists of 3000 points
which correspond to 30 s epochs. The whole data-basis con-
sists of 23 subjects. Every subject contributes with six
samples per wakefulness-sleep phase and per channel, with a
few exceptions where less than six samples were recorded.
The total number of samples is 1368.

As customary in clinical practice the time-amplitude rep-
resentation of the data followed the convention:
5–10 �V/mm pen deflection �amplitudes axis� and
1.5–3 cm/s paper speed �time axis� which amount to epochs
of either 10 or 20 s. EEG snapshots are displayed on moni-
tors with horizontal resolution of at least 1400 pixels in the
data display area.

III. GRAPHICAL EXPERIMENTS WITH DATA

The generalized use of digital polygraphs has allowed fur-
ther data treatment. In particular by appropriate readjust-
ments of the axes one can change the appearance of any
given stage records and make them look like representatives
of any other stage.

We can describe this result in geometric terms. Taken at
face value an EEG record, u�t�, amounts to a set of points in
the time-amplitude plane and we pose the ensuing question:
can we change the appearance of an EEG sample by a scal-
ing affine transformation in such a way that it may be clas-
sified as belonging to another different stage? Here the term
affine transformation alludes to the fact that the scaling fac-
tors may be different in each axis, time, and amplitude.

Figure 1 illustrates the result of the aforementioned
graphical experiment. The graph at the bottom corresponds
to a true REM record of about 7 s long. The remaining four

FIG. 1. EEG sample of REM sleep phase �bottom� and synthetic
replicas from it which mimic the remaining stages.
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graphs are labeled I, II, II/IV, and Wake because that is what
standard application of clinical reading says they are, at least
as far as EEG records are concerned. The key point is that
they are synthetic electroencephalograms obtained through
the appropriate affine transformation of the real raw REM
record in the bottom panel. Certainly, the synthetic EEGs
cannot exhaust the whole panoply of details used for clinical
identification of stages. Thus some particular short length
wave forms �spindles or k-complexes� are not generated by
this procedure, but the main traits are well-reproduced. This
can be assessed by direct comparison of Fig. 1 with Fig. 2 in
which epochs of a true EEG are shown in the lower subpan-
els of every state.

This phenomenon is preserved when running samples are
considered if we allow for some occasional fine-tuning. The
main drawback is the lack of systematics of the procedure.
We propose an approach based on Hilbert transform to elu-
cidate the mutual transformation of stages into one another
through a statistical analysis of the corresponding PDF.

In the authors’ opinion this interconversion of sleep
phases reveals some deep and distinctive structure in sleep
EEGs. It would be interesting to ascertain whether other sets
of physiological signals share this interchangeability among
their elements. Numeric experiments with synthetic signals
such as different types of colored noise and the logistic map
in chaotic regimes with various parameter values show that
this kind of interconversion is not a general feature.

IV. THE ANALYTIC EEG

The EEG time series described above are far from being
periodic and there is no natural way of defining instanta-
neous frequencies. Generally speaking, one can find in the
literature different proposals for assigning an instantaneous
frequency to a nonperiodic signal �11,12�. The conventional
detection of rhythms by neurophysiologists goes through a
supple zero-crossing bookkeeping procedure along some
time interval �this is the familiar ZCR of signal treatment in

other fields� Thus the number of times the EEG signal
crosses the zero potential axis per time unit is at the base of
the very definition of EEG frequency used in neurophysiol-
ogy �13� which, in practice, is applied with further consider-
ations. For instance, very brief zero crossings might be ig-
nored in this counting. This and other subtleties render the
method a little bit fuzzy with respect to an efficient math-
ematical implementation.

We shall instead resort to the concept of analytic signal
�4,5�, based on Hilbert transform �6�, which is widely used in
theory of signal, circuits, and systems. Closer to the present
issue, the analytic signal concept has been applied in �14� to
study chaotic synchronization in the context of nonlinear dy-
namics.

Given a function u�t� for which the Fourier transform
exists, then the so-called analytic signal is defined as

��t� = u�t� + iv�t� , �1�

where v�t� is the Hilbert transform �HT� of u�t�. The HT of a
one-variable scalar function u�t� is defined by

v�t� �
1

�
P�

−�

� u�x�
t − x

dx , �2�

where P stands for Cauchy principal value of the integral.
Thus the function ��t� in Eq. �1� is analytic in the sense of
Cauchy-Riemann.

In the present case, u�t� will represent the EEG signal and
Eq. �1� states that u�t� is the real part of an analytic function.
We can write down that equation in polar form

��t� � A�t�ei��t�, �3�

where A and � stand for the Hilbert amplitude an phase,
respectively. The definition of an instantaneous frequency
readily follows

��t� �
d

dt
��t� =

u�t�v��t� − u��t�v�t�
u2�t� + v2�t�

, �4�

where the prime stands for time derivative.
The definition �2� is not much of a practical application

when dealing with experimentally sampled data. A practical
recipe �6� may, however, be established from the observation
that the HT of the functions sin t and cos t are known to be
−cos t and sin t, respectively.

Let �u0 ,u1 ,u2 , . . . ,un−1� stand for the sampled data values
u�tk�=uk. For the sake of simplicity, let us suppose that
samples are equally spaced in time by an interval �t and that
n is even. This time series may be represented as the real
Fourier sum

uF�t� = 	
k=0

n/2−1

�ak cos�2�kt/T� + bk sin�2�kt/T�� , �5�

where T=n�t. The HT of uF reads then

FIG. 2. �Color online� Raw epochs of five EEG stages ampli-
tudes u�t�, lower subpanels �black lines� together with their corre-
sponding smoothed Hilbert instantaneous frequencies 
��t��, upper
subpanels �red lines�.
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vF�t� = 	
k=0

n/2−1

�ak sin�2�kt/T� − bk cos�2�kt/T�� . �6�

The determination of the n Fourier coefficients is carried out
by solving the linear algebraic system defined by the condi-
tions �uF�tk�=uk�, with k=0, . . . ,n−1. A discrete fast Fourier
transform routine �15� may be used to this end.

Substitution of Eqs. �5� and �6� into Eq. �4� provides us
with an explicit formula to calculate the Hilbert instanta-
neous frequency. The derivatives in Eq. �4� are obtained
from Eqs. �5� and �6�.

Notice that, according to Eq. �4�, � may occasionally take
negative values. This outcome is viewed as a serious draw-
back in engineering applications literature �11�. Accordingly,
the input signals are narrow-band filtered in order to avoid
their emergence. There is nothing mathematically incorrect
with negative frequencies, not even from a physical interpre-
tation point of view.

Because of Eq. �2� every value of the instantaneous fre-
quency ��t� provided by the analytic signal gets contribu-
tions from the entire epoch. We tend to think of this feature
as a virtue of the method since all the data in the time series,
which share the clinical filing, contribute to some extent to
define every value of the instantaneous frequency. In con-
trast, we must mention that the same argument has been put
forward in the literature as a formal drawback, the objection
being about causality violation �16,17�.

V. EEG DATA MINING

The aim of the data mining presented here is threefold.
First of all, we show that the analytical signal ansatz pro-
vides a reasonably good description of the rhythms observed
in clinical practice when contrasted with local averages

��t�� taken over some time interval. This observation but-
tresses the appropriateness of treating the EEG signal as a
complex variable.

Second, we show that both raw Hilbert frequencies and
amplitudes gather into a well-defined PDF for every
wakefulness-sleep phase. In Sec. I we invoked Fig. 1 as a
strong indication that affine transformations in the time-
amplitude plane achieve the desired stage interchangeability.
From now on we replace the EEG signal description in terms
of u�t� with A�t� and ��t�. These two magnitudes are closer
to the RK rules and lead eventually to a systematics since
their values yield well-defined histograms for wakefulness
and sleep stages. From them we extract probability density
functions which we denote by gk�A� and fk���, respectively,
where k stands for the stage index �k=I, II, III/IV, REM,

Wake�. We designate by �Āk ,�k
A�, ��̄k ,�k

�� their respective
means and standard deviations.

Third, we show that with the appropriate choice of scaling
and shifting parameters one gets

	kfk��� − �̄k�/	k� = F��� , �7�


kgk��A − Āk�/
k� = G�A� , �8�

where F and G exhibit net data collapse. The numbers 	k and

k have no dimension. When F and G have unit standard
deviation, as in the present case, they then take the same
values as �k

� and �k
A, respectively.

We interpret the rescaling between PDFs provided by the
previous equations as the replica, in the new amplitude-
frequency description, of the EEG congruency procedure de-
fined in the amplitude-time plane. Due to the instrumental
role played by the PDF in this interpretation we call this
property statistical affinity. As a by-product, we carry out a
determination of proper frequencies and amplitudes for re-
laxed �closed eyes� wakefulness and every sleep phase, since
the PDFs are not scale free.

A. Adequacy of Hilbert frequencies to the definition of EEG
rhythms

The time series of Hilbert frequencies ��t� are as irregular
as their EEG counterpart. As aforementioned, instantaneous
frequencies can even assume negative values. However, EEG
filing does not need such an intensive determination of in-
stantaneous frequencies as that provided by ��t�. Figure 2
presents epochs of 30 s of true EEG samples corresponding
to the classes we study. In parallel to these EEG snapshots,
we have plotted the locally averaged determination of values

��t��. The time interval chosen for adjacent data points av-
eraging is 3 s, albeit this value is not crucial at all. The
interest of Fig. 2 stems from the fact that it witnesses that

��t�� essentially agrees to the clinical determination of
rhythms from EEG snapshots. This feature is general across
the collection of samples we have analyzed.

We consider that these results establish a successful nexus
between the mathematical procedure and the visual analysis.
Notice that the determination of the instantaneous Hilbert
frequency is based on the assumption of the analytic signal
principle with no a priori connection with the ZCR.

A further perspective about the connection between the
clinical and mathematical procedures is the following. In
Fig. 3 we represent the PDF of the smoothed instantaneous
frequencies obtained from the whole set of EEG samples.
The rhythm intervals allowed by the RK rules �3� are also
indicated in the same Fig. 3 by labeled horizontal boxes. We
observe a remarkable intersection of both types of informa-
tion albeit not complete. Taking into account that some short
length wave forms �spindles, k-complexes, …� are not con-
sidered in our analysis, the agreement is acceptable.

Fourier power spectrum analysis is a common tool when
dealing with stationary time-series. EEGs are not stationary
since the computation of statistics as the mean amplitude is
not necessarily time-invariant. Notwithstanding that fact, we
have computed the Fourier power spectrum for every EEG
sample and normalized it to unit power. Figure 4 represents
the average power spectra of wake-sleep phase states in log-
log scales. Lines of slope corresponding to 1/ f and 1/ f2

noise are given for visual reference. The peak at about 9 Hz
in the wakefulness power spectrum corresponds to the pres-
ence of 	-complexes charateristics of relaxed closed-eyes
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wakefulness EEGs. The peak at about 10.5 Hz in the phase II
power spectrum corresponds to spindles �which are charac-
teristic wave forms lasting about 1 s�. Obviously, the height
of both peaks depends on the whole 	-complex and spindles
content of the sample set. It is a common practice to seek
power-law behavior in power spectra but due to the limited
frequency range in our data we do not proceed in that direc-
tion.

B. Statistics for Hilbert frequencies

Once a positive visual link between the experimental out-
comes and 
��t�� has been established, we study the statistics
of raw Hilbert frequencies. To this end we commence by
producing an approximate PDF from normalized statistical
histograms. This computation is the analog of that for the
smoothed frequencies in the last part of Sec. V A. The new
outcomes are shown in Fig. 5 on a vertical log-scale. The

profiles are not Gaussian because they exhibit longer tails.
The overall frequency range used in the polysomnographic
analysis is explicitly marked and labeled as RK in the plot. It
is worth noticing that only rhythms inside this interval inter-
vene in the sleep phase classification procedure. Instead,
well-defined profiles extend outside the RK interval.

The statistical modes, i.e., the most frequent values, for �
accommodate well in the RK frequency bands of the EEG
background of relaxed wakefulness and sleep phases.

According to Fig. 5, in first approximation the density
profiles are symmetric about some shift frequency �̄k and go
as exp�−��− �̄k � /�k�, �k=I, II, III/IV, REM, Wake�, where
�k stands for a decay constant to be interpreted as a charac-
teristic frequency of the stage. A linear fit to the log of the
PDF tail yields an estimate of the proper time for every
stage: �k�2� /�k. These results are given in Table I and we
propose in Sec. VIII a possible meaning for them. Further-
more, the deeper the sleep the longer the proper time of the
stage such as is witnessed in Table I. Error bars have been
estimated through bootstrap statistical method �18� and cor-
respond to one standard deviation. One-thousand replicas
among the 23 subjects were produced for every wake-sleep
phase to this end. No significant bias was detected in the
distributions of the proper times bootstrapped values.

Figure 5 contains also the outcome of the analysis when
the amplitudes in the raw EEG records were previously
scrambled. Those are the so-called scrambled surrogate data
and the situation corresponds to pose the null hypothesis:
EEGs are random time series. To obtain the surrogate data
we generate, for every sample, a random permutation � and
transform the time series �ui� into �ūi=u��i��, where ��i� is
the image of index i under �. The fact that the curve is not
flat is due to the finiteness of the sampling rate and the 45 Hz
filtering of the signal. The slope of this distribution yields a
0.65 s characteristic time. Figure 5 shows that some essential
rhythms are definitely lost after EEG amplitude scrambling.
Thus the null hypothesis is not true, and the EEGs are not
random time series.

FIG. 3. �Color online� Smoothed Hilbert frequency PDF for
wakefulness and sleep phases obtained from the whole set of EEG
samples. Horizontal boxes stand for the intervals where EEG fre-
quencies are to lie according to the RK protocol.

FIG. 4. �Color online� Normalized average Fourier power spec-
tra for wake-sleep phases obtained from the whole set of EEG
samples. The slopes for 1 / f and 1/ f2 noise are also indicated. The
peak at about 9 Hz in wakefulness power spectrum corresponds to
	-complexes. The peak at about 10.5 Hz in phase II corresponds to
the presence of spindles.

FIG. 5. �Color online� Raw Hilbert frequency PDF for wakeful-
ness and sleep phases. The PDF for scrambled surrogates are ex-
plicitly indicated as well as the frequency range used by RK filing
rules. The inset shows the data collapse into a master curve after
rescaling of the five EEG PDFs.
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The similarity among the five profiles in Fig. 5 suggests
their possible renormalization into a master curve. Indeed,
when the five probability density profiles fk��� are shifted
and rescaled so as to have vanishing average and unit stan-
dard deviation, according to Eq. �7�, then a net data collapse
into a unique master curve is observed �see inset of Fig. 5�. It
points toward a common underlying mechanism driven es-
sentially by two tuning parameters: �̄ and ��, that may take
five pairs of values ��̄k ,�k

��. Under this perspective, a sleep
stage change corresponds to a sudden variation of those pa-
rameter values, as regards the EEG rhythm.

C. Statistics for Hilbert amplitudes

The analysis with respect to EEG Hilbert amplitudes pro-
ceeds similarly to the statistics of frequencies above. In Fig.
6 we plot the different PDF for the analytic signal amplitudes
in every stage. Scrambled surrogates produce the same PDFs
as raw data.

The inset of Fig. 6 shows the data collapse after renormal-
ization of Hilbert amplitude distributions, gk�A�, �k=I, II,
III/IV, REM, Wake�, according to Eq. �8�. As in the frequen-
cies case, we think of a unique underlying mechanism driven

by two parameters, mean Ā and standard deviation �A,
whose values are determined by the physiological state. Fur-
thermore, we carry out a determination of the characteristic

amplitude of every stage. A linear fit to the log of the distri-
bution tail yields an estimate of the proper amplitude ak for
every stage. These results are reported in Table I. Error bars
have been estimated through bootstrap �18� following the
same scheme used above in the analysis of Hilbert frequen-
cies. No significant bias was detected in the distributions of
the proper amplitudes bootstrapped values.

Certainly, the raw EEG amplitudes could be directly used,
without further ado, to perform an equivalent analysis since,
unlike frequencies, there is no ambiguity concerning their
definition. We have checked the corresponding outcomes,
which produce well-defined PDFs, roughly symmetric with
respect to zero amplitude, that exhibit exponential tails too.
For the sake of consistency with our scheme based on the
analytic signal hypothesis we choose to deal with Hilbert
amplitudes A�t�.

VI. CHARACTERISTIC TIMES FROM LACUNARITY

The proper time introduced in Sec. V B can be compared
with other characteristic times associated with the wake-
sleep stages by a different way of analyzing the temporal
texture of EEG time series. For this purpose the concept of
lacunarity proves to be helpful. It complements the informa-
tion furnished by the notion of fractal dimension since ob-
jects with different degrees of homogeneity in its structure
may share the same value of fractal dimension. Originally
introduced in fractal geometry �7,19,20�, it may actually be
applied to classify a time or space pattern whether fractal or
not �21,22� characterizing the degree of homogeneity. It has
met utility in a wide range of fields such as astrophysics �23�,
fluid mechanics �24�, ecology �25�, or medicine �26�, at least
at a descriptive level. Here we will endow the procedure with
a recipe to determine characteristic times in the pattern.

Following �21� we define lacunarity according to the so-
called gliding-box algorithm. Suppose a time series is given
containing N equally spaced data �ui�i=1

N , with vanishing
mean. We generate a binary time series by assigning the
mass value 1 �0� to positive �negative or vanishing� values of
ui. This binary time series is then scanned with a one-
dimensional window of length r which glides on it one point
at a time. At every position of the control segment �gliding
box� the mass inside is evaluated. The collection of gliding
boxes allows us to define the distribution of mass n�M ,r� as
the number of gliding boxes with length r and mass M. Di-
viding n�M ,r� by the total number of boxes it results in a
probability function Q�M ,r�. When the mass in a gliding box

TABLE I. EEG statistics from the PDFs in Figs. 5 and 6.

State
�̄

�Hz�
��

�Hz�
Ā

��V�
�A

��V�
�

�s�
a

��V�

I 6.9 10.4 9.2 5.9 0.93±0.04 5.7±0.3

II 4.8 7.8 13.1 9.7 1.21±0.04 8.9±0.3

III/IV 2.5 4.6 20.6 13.8 1.82±0.05 12.7±0.7

REM 5.3 9.0 8.5 5.2 1.04±0.02 4.4±0.2

Wake 9.6 11.3 9.3 5.9 0.92±0.04 5.1±0.6

FIG. 6. �Color online� Analytic signal amplitude PDF for wake-
fulness and sleep phases. The inset corresponds to data collapse into
a master curve after rescaling of the PDF.
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is independent of its position then we have a translational
invariant time series. Of course, translational invariance may
depend on the time scale.

Lacunarity at scale r is defined as


�r� =
Z�2��r�

�Z�1��r��2 , �9�

where Z�n�, n=1,2, are the statistical moments associated
with Q,

Z�n��r� � 	
M

MnQ�M,r� .

In the case of translational invariant time series Z�2��r�
= �Z�1��r��2, hence 
�r�=1. Time series with lacunae of all
sizes will have 
�r��1 whereas patterns with some degree
of regularity, for instance, with single-sized lacunae, are ex-
pected to have low 
�r��1. Lacunarity is to be considered
as a scale-dependent measure of texture.

Plotnick et al. �22� have carefully discussed the meaning
of the shape of 
�r� profiles. Lacunarity for a time series of
length N, at the two extreme values r=1 and N is 
�1�
=1/ P, where P stands for the fraction of occupied sites, and

�N�=1. For other r values the shape of 
�r� depends of the
nature of the signal. A random time series from a uniform
distribution gives rise to a concave upwards 
�r� because
holes of any size are present at any scale. Lacunarity de-
creases steadily when increasing the length of the box be-
cause it becomes more translationally invariant. No change
of scale emerges. The analytic shape of this profile is readily
computed as the probability for a gliding window of length r
to contain mass M is given by the binomial probability dis-
tribution

Q�M,r� =
1

2r
 r

M
� , �10�

and therefore Eq. �9� reduces to


�r� = 1 +
1

r
�11�

for a random pattern. A regular pattern such as a square wave
of wavelength � gives rise to a concave downwards 
�r�
with a high constant value at small enough box lengths. Then
its value suddenly decays to 
=1 after the box size exceeds
� because translational invariance is reached. The transition
corresponds to the proper regularity scale of the pattern. A
striking situation in between is observed when pulses of du-
ration � are randomly generated. A transition from down-
ward to upward concave shape at about r=� appears. This
witnesses a change in the pattern. Thus looking for such
downward-upward crossovers in 
�r� profiles is a tool to
extract characteristic time scales from irregular time series.
Notwithstanding this, the quantitative determination of the
transition point is not straightforward, as we explain below.

To use lacunarity in the study of EEG signals �27� we first
subtract the global average and then convert them into binary
symbolic time series �positive versus negative potential
state�. To make possible an unbiased comparison among the

profiles 
�r� from the various EEG samples we propose the
following variant. The whole task is performed twice. The
first �second� time, 1’s are assigned to positive �negative�
values of the time series and a profile 
+�r� �
−�r�� is ob-
tained. As a numeric zero is rare in the time series, no bias is
expected whether it is assigned either as positive or negative.
Furthermore, the ratio between the number of positive and
negative values in a time series differs usually from unity,
thus we work with 
H, half the harmonic mean:

1


H
=

1


+ +
1


− . �12�

This expression for the lacunarity is normalized at the origin:

H�1�=1, a feature very interesting in order to build up av-
erage lacunarity profiles for the different groups of wake-
sleep states, which we plot in Fig. 7. For the sake of com-
parison we include the normalized lacunarity of scrambled
EEGs �solid line, no symbol�. We observe that wakefulness
lacunarity is the closest profile to a pure random process. As
far as sleep gets deeper the lacunarity profile moves away,
phase I �or drowsiness� first and then phase II, and reaches
maximum regularity at phase III-IV. Note the huge similarity
between REM sleep and phase II. By contrast, we remind
that the EEG of the former is known to resemble a wake state
in other respects; and more importantly, it becomes clear
from Fig. 7 that there are transitions from convex to concave
shape as the size of the gliding-box increases. We note in
passing that for a self-affine time series, 
H is a power law
and then would appear as a straight line in Fig. 7.

The quantitative estimation of the point where the transit
occurs is not simple. The transit may even take place along
an interval where log�
H�log r�� is quasilinear and thus the
inflexion point is not well-defined in practice. As a matter of
fact, the systematic numerical determination of downward-
upward crossovers in lacunarity profiles has not been consid-
ered in the literature. We found that their conventional loca-
tion by the vanishing of the second derivative turns out to
exhibit, in the present case, numerical instabilities. Closely

FIG. 7. �Color online� Average normalized lacunarity profiles,
see Eq. �12�, for the different wake-sleep states as a function of the
gliding box size r in log-log scales. The solid concave upward curve
corresponds to scrambled surrogates.
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related to the second derivative of a function h�x� is its local
curvature ��x�,

��x� =
d2h�x�/dx2

�1 + �dh�x�/dx�2�3/2 . �13�

So, we have chosen to locate the transition at the point r
=� of maximal curvature of the lacunarity profiles in log-log
representation. This furnishes more stable results.

To locate the point � from the discrete unevenly sampled
function h�log r�=log 
H�log r� we have used a gliding box
of size 2N+1 and fitted a parabola �the simplest analytic
form yielding second derivatives�. Stable results were ob-
tained for N�3. The values shown correspond to N=3.
Computation of the location of this point for every EEG
sample yields the statistic that we plot in Fig. 8. Notice that
both lacunarity and Hilbert methods yield a similar physi-
ological hierarchy for the values � and �. Error bars corre-
spond to one standard deviation.

In �22� a variant to the computation of the lacunarity is
proposed. It is only applicable to the time series of positive
terms and avoids the binary reduction of the data allowing
the analysis of quantitative data. The idea is to compute la-
cunarity using the sum of the distribution in the gliding box,
which is interpreted as beginning the analysis at a coarser
level of resolution. We have carried out this type of analysis
looking for characteristic times in A�t�, since they are posi-
tive. Lacunarity profiles in this scheme are not normalized at
the origin any longer. Thus, unlike the former analysis, we
cannot obtain average lacunarity profiles. The statistics of
characteristic times obtained from all EEG samples with this
variant presents a dispersion at least twice that of the binary
version. This is likely due to the more irregular structure of
these lacunarity profiles so that the search strategy for a
maximal curvature point in log 
 might not be the most ad-
equate. Due to these drawbacks we choose not to abound
with this variant.

VII. PHASE SYNCHRONY BETWEEN EEG CHANNELS

Throughout our analysis we have left aside the Hilbert
phase � in Eq. �3�. As we have already noted in passing,
there is presently an increasing interest about synchrony phe-
nomena in complex systems. In this section we gather some
results concerning synchrony of left-right EEG channels, via
the Hilbert phase.

Some studies that handle long enough time series track
the time evolution of the phases of the system and may iden-
tify phenomena such as resonances or phase locking. We are
not in position of carrying out such a type of analysis as the
samples in our data set are not long enough for that purpose.
We can instead study phase synchrony in a statistical sense.

In Fig. 9 we plot the normalized histograms obtained for
every wake-sleep state of the Hilbert phase difference ���t�
between left and right channels. ���t� was mapped in the
interval �−� ,��. For scrambled amplitude EEGs, the prob-
ability density is uniform. For wake-sleep stages, once again,
there is a hierarchy in the degree of synchrony. Thus, as far
as sleep gets a deeper state, phase synchrony between left-
right EEG channels is steadily enhanced, in a statistical
sense. Notice that REM sleep ranks between phases I and II
rather than next to wakefulness. This shows once more that
in some aspects REM sleep is more similar to wakefulness
while in other it appears clearly among the sleep stages.

VIII. DISCUSSION

The present work has been motivated by the observation
that EEG samples representative of wakefulness and sleep
phases can be transformed into each other by affine transfor-
mations.

First, we gain insight about the phenomenon directly on
the time-amplitude plane. Next, in order to deal with a sys-
tematic procedure, the principle of the analytic signal turned
out to be of utility to define instantaneous frequencies. These
frequencies, averaged over a short time interval, result in
good agreement with clinical criteria. After that, the
frequency-amplitude description has been developed in sta-
tistical terms.

The PDF for amplitudes and raw frequencies we have
built up from a large set of EEG samples are not scale free.
As a matter of fact, their exponential tails have led us to

FIG. 8. �Color online� Characteristic times � and � as a function
of the wake-sleep phase. Values of � are obtained from maximal
curvature of log�
H� and then averaged over EEG samples. Values
of � are obtained from slopes in the Hilbert frequency PDF �see
Table I�. Error bars refer to one standard deviation.

FIG. 9. �Color online� PDF for the left-right Hilbert phase dif-
ferences of the wake-sleep stages.
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determine proper times �or frequencies� and amplitudes. If
we consider the pairs of characteristic times and amplitudes
��k ,ak� in Table I then, with the global perspective, it be-
comes evident that slow sleep �k correlates with the largest
amplitudes ak �k=II, III/IV�. Correspondingly, wakefulness,
drowsiness, and REM sleep share the faster rhythms and the
smaller amplitudes. This feature is familiar to neurophysiolo-
gists, albeit no quantification attempt had been done to date,
to the best of our knowledge.

Furthermore, with the exception of REM sleep, the prod-
uct �k

A�k
�=67±6 �V Hz, in a way that brings to mind uncer-

tainty relations. Although we do not assign any deep signifi-
cance to this fact, it is anyway curious because here
amplitude and frequency are not Fourier transform duals of
one another.

It could be interesting to extend the study to other phys-
iopathological situations such as epileptic seizures, anesthe-
sia, and coma which comprise, as a matter of fact, a broad
variety of degrees or stages and where proper time-amplitude
correlations seem to be prevented.

The experimental situation with sleep polysomnographies
has offered a rather exceptional starting point for the present
analysis. We mean that we are given, ab initio, a number of
well-defined sets of physiological states. Their classification
is the outcome of observational work and their current defi-
nition seems not to have historically followed a straightfor-
ward course �28�. Furthermore, as the guidelines of that
scheme have nothing to do with any mathematical formal-
ism, it is striking that the statistics on amplitudes and, par-
ticularly, Hilbert frequencies obey well-defined patterns over
broad intervals. A fortunate enough fact that has led us to
point out the existence of data collapse for PDFs.

We have carried out an independent determination of
sleep-wake EEG characteristic times from lacunarity pro-
files. To this end, we introduced a normalized lacunarity and
identified the concave-convex transition by the points of
maximal curvature of the profiles. We hope this procedure
may also be used with other types of binary time series. The
characteristic times obtained this way, although slightly dif-
ferent from those given by Hilbert frequencies, still preserve
the physiological hierarchy among wake-sleep stages �Fig.
8�.

In summary, we have clarified from a quantitative point of
view some features observed rather qualitatively in clinical
practice �see items �1�–�4� in the Introduction�. We close this
section with some, certainly more speculative, comments
which we consider worth doing.

It is presently accepted that physiological information
travels through the nervous system coded in wave trains of
different duration �30�. The EEG is the integration of a huge
number of wave trains traveling to the cortex. We think of
proper times ��k� as being a sort of global measure of the
average duration of the EEG wave forms in every stage.
From their values we conclude that neuronal information
during deep sleep is coded in longer wave trains, perhaps
needed for the recovery function commonly accepted for it.

Instead, shorter wave trains during wakefulness and
drowsiness are consistent with a higher number of simulta-
neous brain tasks. Dreams, thought to happen during REM
sleep, convey some degree of mental activity �we remind the
term paradoxical sleep�. Arguably, the short values for �REM
and � we have found render the REM sleep closer to a wake-
fulness stage than to deep sleep. REM sleep may not have a
recovery function, which is a generally accepted fact.

Characteristic EEG amplitudes �ak� are to be interpreted
as a measure of the amount of neuron population that syn-
chronize their activity, at least as the phenomenon is re-
corded on the scalp. Large EEG amplitudes, such as in sleep
phase III/IV, can be attained only under some degree of col-
lective synchrony. Phase synchrony between EEG channels
points in this direction.

Finally we interpret the data collapse for the PDF as a
signature of the presence of a common underlying mecha-
nism. Hence the �sudden� transitions from any wakefulness-
sleep stage to another would correspond to discrete changes
of the tuning parameter values. The nature of that mecha-
nism, as well as the proper times and amplitudes, should be
universal in the sense that it emerges from data from a vari-
ety of subjects. Although the situation might appear favor-
able, we do not propound here to explain the transit phenom-
enon as a phase transition in the statistical mechanics sense,
as this should require further analysis �29�. For that purpose
one should study the very EEG samples when the
wakefulness-sleep phase transit occurs. Notice that the EEG
samples we have selected for analysis were especially chosen
to be bona fide representatives of the stages and not of the
transitions. Indeed, further work in this direction seems
worth doing.
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